Bültmann & Gerriets
Vektorautokorrelationen stochastischer Prozesse und die Spezifikation von ARMA-Modellen
von Efstathios Paparoditis
Verlag: Physica-Verlag HD
Reihe: Arbeiten zur Angewandten Statistik Nr. 34
Hardcover
ISBN: 978-3-7908-0517-8
Erschienen am 10.12.1990
Sprache: Deutsch
Format: 244 mm [H] x 170 mm [B] x 11 mm [T]
Gewicht: 329 Gramm
Umfang: 184 Seiten

Preis: 54,99 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 21. Mai.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

54,99 €
merken
zum E-Book (PDF) 38,66 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

Die Arbeit beschäftigt sich mit der Spezifikation der Ordnung von ARMA-Modellen mit Hilfe des Konzepts der Vektorautokorrelationen. Diese sind lineare Abhängigkeitsmaße zwischen Segmenten eines stochastischen Prozesses und lassen sich als direkte multivariate Verallgemeinerung der in der Praxis der Zeitreihenanalyse sehr verbreiteten Korrelationsmaße auffassen. Die Verteilung der korrespondierenden Stichprobenkenngrößen wird untersucht. Über die Herleitung der asymptotischen Verteilung der Stichprobenvektorautokorrelationen hinaus wird ein alternatives, auf dem Bootstrap-Prinzip aufbauendes Verfahren entwickelt, mit dem bessere Aussagen über die exakte Verteilung der Stichprobenvektorautokorrelationen erzielt werden. Erweiterungen des Ansatzes der Vektorautokorrelationen zur Behandlung grenzstationärer Prozesse werden vorgestellt. Zudem werden die Beziehungen zwischen Vektorautokorrelationen und einer Reihe anderer, in der Literatur vorgeschlagenen, Verfahren zur Prozeßidentifikation untersucht.



1 Vektorautokorrelationen stochastischer Prozesse.- 1.1 Der Begriff der Vektorautokorrelationen.- 1.2 Vektorautokorrelationen und ARMA-Prozesse.- 2 Stichprobenvektorautokorrelationen.- 2.1 Schätzung der Vektorautokorrelationen.- 2.2 Rekursionsformeln zur Berechnung der empirischen Vektorautokorrelationen.- 3 Asymptotische Verteilung der Stichprobenvektorautokorrelationen.- 3.1 Vorbemerkung.- 3.2 Herleitung der asymptotischen Verteilung.- 3.3 Ein Algorithmus zur konsistenten Schätzung der asymptotischen Standardabweichung der Stichprobenvektorautokorrelationen.- 3.4 Einige abschliessende Anmerkungen zur asymptotischen Verteilung der Stichprobenvektorkorrelationen im Falle eines ARMA(p,q)-Prozesses.- 4 Bootstrap-Schätzung der Verteilung der Stichprobenvektorautokorrelationen.- 4.1 Einführende Bemerkungen zum Bootstrap-Prinzip und zur Bootstrap-Inferenz.- 4.2 Schätzung der unbekannten Verteilungsfunktion der Zufallsschocks.- 4.3 Übersichtliche Darstellung des Bootstrap-Algorithmus zur Approximation der Verteilung der Stichprobenvektorautokorrelationen.- 4.4 Die Konsistenz der Bootstrap-Schätzung.- 4.5 Die asymptotische Validität des Verfahrens.- 5 Simulationen und Anwendungsbeispiele.- 5.1 Simulationen.- 5.2 Anwendungsbeispiele.- 6 Erweiterungsmöglichkeiten des Ansatzes der Vektorautokorrelationen und seine Beziehung zu einigen neueren Ansätzen der Identifikation von ARMA Modellen.- 6.1 Einige Anmerkungen zu grenzstationären Prozesse.- 6.2 Kenngrößen einiger neuerer Verfahren zur Identifikation von ARMA Modellen und ihr Zusammenhang mit den Vektorautokorrelationen.- Zusammenfassung.


andere Formate
weitere Titel der Reihe