Bültmann & Gerriets

Computer, Naturwissenschaften,Technik & Digitale Fotografie / Mathematik/Physik / Mathematik
Pride Month mit der Autorin Ina Ulber und "CHAOS CUPID"
11.06.2025 um 19:00 Uhr
Partielle Differentialgleichungen
Eine anwendungsorientierte Einführung
von Ben Schweizer
Verlag: Springer Berlin Heidelberg
Reihe: Masterclass
Hardcover
ISBN: 978-3-662-67187-0
Auflage: 3. Auflage 2023
Erschienen am 19.01.2024
Sprache: Deutsch
Format: 166 mm [H] x 239 mm [B] x 33 mm [T]
Gewicht: 1352 Gramm
Umfang: 660 Seiten

Preis: 39,99 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 22. Mai.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

39,99 €
merken
zum E-Book (PDF) 29,99 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Biografische Anmerkung
Klappentext
Inhaltsverzeichnis

Prof. Dr. Ben Schweizer, TU Dortmund, Fakultät für Mathematik



Das Buch führt in die Theorie der Partiellen Differentialgleichungen ein, lediglich die Grundvorlesungen der Analysis werden vorausgesetzt. Eine Vielzahl linearer und nichtlinearer Differentialgleichungen wird mit Modellierungsansätzen motiviert und rigoros analysiert. Nach den klassischen linearen Problemen der Potentialtheorie und Wärmeleitung werden insbesondere nichtlineare Probleme aus der Theorie poröser Medien, der Strömungsmechanik und der Festkörpermechanik behandelt. Entlang der Aufgabenstellungen von zunehmender Komplexität werden moderne Methoden und Theorien der Analysis entwickelt.¿

Für die vorliegende 3. Auflage wurde der Text überarbeitet und korrigiert, an vielen Stellen wurden Beweisabläufe optimiert und Motivationstexte eingebaut. An anderen Stellen inhaltlich ausgedünnt und verkürzt, um den Vorlesungsumfang nicht zu sprengen.



¿I Einführung und Grundlagen.- 1. Modellierung mit Partiellen Differentialgleichungen.- 2. Erste Eigenschaften von Lösungen.- 3. Grundlagen für einen verallgemeinerten Lösungsbegriff.- 4. Schwache Konvergenz.- II Lineare Elliptische Differentialgleichungen.- 5 Darstellungsformeln.- 6 Energiemethoden.- 7. Maximumprinzipien für elliptische Gleichungen.- 8. Harmonische Funktionen: Weitere Eigenschaften und Verfahren.- III Lineare zeitabhängige Differentialgleichungen.- 9. Darstellungsformeln für Parabolische Gleichungen.- 10.- Zeitabhängige Funktionenräume.- 11 Energiemethoden für Parabolische Gleichungen.- 12. Wellengleichungen.- IV Variationsrechnung.- 13.- Direkte Methode der Variationsrechnung.- 14. Nichtkonvexe Funktionale, Nebenbedingungen.- 15. Konvexe Analysis.- V Fixpunktsätze und Monotone Operatoren.- 16.- Lösung nichtlinearer Gleichungen mit Fixpunktsätzen.- 17. Monotone Operatoren.- 18. Stationäreporöse Medien Gleichungen.- VI Nichtlineare Evolutionsgleichungen.- 19. Quasilineare Gleichungen.- 20. Degenerierte Diffusion.- 21. Eindeutigkeit und Stabilität.- VII Strömungsmechanik.- 22.- Modellierung von Fluiden.- 23. Die Stokes-Gleichung.- 24. Navier-Stokes und Euler-Gleichungen.-  VIII Festkörpermechanik.- 25. Modellierung und lineare Theorie.- 26. Nichtlineare Elastizität.- 27. Plastizität.- Anhang.- Literaturverzeichnis.- Sachverzeichnis.


andere Formate
ähnliche Titel
weitere Titel der Reihe