Bültmann & Gerriets
Pride Month mit der Autorin Ina Ulber und "CHAOS CUPID"
11.06.2025 um 19:00 Uhr
Optimal Shape Design for Elliptic Systems
von O. Pironneau
Verlag: Springer Berlin Heidelberg
Reihe: Scientific Computation
Hardcover
ISBN: 978-3-642-87724-7
Auflage: Softcover reprint of the original 1st ed. 1984
Erschienen am 04.05.2012
Sprache: Englisch
Format: 229 mm [H] x 152 mm [B] x 11 mm [T]
Gewicht: 276 Gramm
Umfang: 184 Seiten

Preis: 106,99 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 23. Mai.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

106,99 €
merken
zum E-Book (PDF) 96,29 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

The study of optimal shape design can be arrived at by asking the following question: "What is the best shape for a physical system?" This book is an applications-oriented study of such physical systems; in particular, those which can be described by an elliptic partial differential equation and where the shape is found by the minimum of a single criterion function. There are many problems of this type in high-technology industries. In fact, most numerical simulations of physical systems are solved not to gain better understanding of the phenomena but to obtain better control and design. Problems of this type are described in Chapter 2. Traditionally, optimal shape design has been treated as a branch of the calculus of variations and more specifically of optimal control. This subject interfaces with no less than four fields: optimization, optimal control, partial differential equations (PDEs), and their numerical solutions-this is the most difficult aspect of the subject. Each of these fields is reviewed briefly: PDEs (Chapter 1), optimization (Chapter 4), optimal control (Chapter 5), and numerical methods (Chapters 1 and 4).



1. Elliptic Partial Differential Equations.- 1.1 Introduction.- 1.2 Green's Formula.- 1.3 Sobolev Spaces.- 1.4 Linear Elliptic PDE of Order 2.- 1.5 Numerical Solutions of Linear Elliptic Equations of Order 2.- 1.6 Other Elliptic Equations.- 1.7 Continuous Dependence on the Boundary.- 2. Problem Statement.- 2.1 Introduction.- 2.2 Definition.- 2.3 Examples.- 2.4 Principles of Solution.- 2.5 Future of Optimal Design Applications in Industry.- 2.6 Historical Background and References.- 3. Existence of Solutions.- 3.1 Introduction.- 3.2 Dirichlet Conditions.- 3.3 Neumann Boundary Conditions.- 3.4 Conclusion.- 4. Optimization Methods.- 4.1 Orientation.- 4.2 Problem Statement.- 4.3 Gradients.- 4.4 Method of Steepest Descent.- 4.5 Newton Method.- 4.6 Conjugate Gradient Method.- 4.7 Optimization with Equality Constraints.- 4.8 Optimization with Inequality Constraints.- 5. Design Problems Solved by Standard Optimal Control Theory.- 5.1 Introduction.- 5.2 Optimization of a Thin Wing.- 5.3 Optimization of an Almost Straight Nozzle.- 5.4 Thickness Optimization Problem.- 6. Optimality Conditions.- 6.1 Introduction.- 6.2 Distributed Observation on a Fixed Domain.- 6.3 Other Cases with Linear PDE.- 7. Discretization with Finite Elements.- 7.1 Introduction.- 7.2 Neumann Problem.- 7.3 Dirichlet Conditions.- 7.4 Other Problems.- 7.5 Convergence.- 8. Other Methods.- 8.1 Introduction.- 8.2 Method of Mappings.- 8.3 Finite Difference Discretization.- 8.4 Method of Characteristic Functions.- 8.5 Discretization by the Boundary Element Method.- 9. Two Industrial Examples.- 9.1 Introduction.- 9.2 Optimization of Electromagnets.- 9.3 Optimization of Airfoils.- 9.4 Conclusion.- References.


andere Formate
weitere Titel der Reihe